Medical Device Security: The Transition From Patient Privacy To Patient Safety

Ctrl

Scott Erven

Who I Am

Scott Erven

Scott Erven is an Associate Director at Protiviti with over 17 years of information security and information technology experience with subject matter expertise in medical device and healthcare security. Scott has advised the US Department of Homeland Security, Health and Human Services, Food and Drug Administration as well as national policymakers. His research on medical device security has been featured in Wired, Forbes, BBC and numerous media outlets worldwide. He has been involved in numerous IT certification development efforts as a subject matter expert in information security. His current focus is on research that affects human life and patient safety issues inside today's healthcare landscape.

Associate Director – Medical Device & Healthcare Security

Security Researcher

Over 17 Years Experience - 5 Years Experience Managing Security Inside Healthcare Systems

Over 4 Years Researching Medical Device Security

Agenda

Why Research Medical Devices

Phase 1 Research: Device Vulnerabilities

Phase 2 Research: Internet Exposure

Phase 3 Research: Admin Access

Honeypot Research: Are Attacks A Reality?

Problem Awareness

Treatment Plans

Why Research Medical Devices

Ctrl

Personal & Professional Impact

Many individuals rely on these devices daily.

Even at times when we aren't personally affected, people we care about may be.

Patient safety and quality care is at the core of healthcare's mission and values.

Malicious Intent Is Not A Prerequisite To Patient Safety Issues

What We Are Doing

Medical Device Assessment Discover patient safety issues • Security-Focused Technical Assessment (not HIPAA) • Research serves healthcare mission and values • Equip defenders against accident and adversaries • Equip defenders against accident and adversaries

	Coordination & Notification	Alert affected parties
•	Healthcare Providers	
•	Medical Device Manufacturers	
•	Government Agencies (FDA and ICS-CERT)	

	Public Awareness	Inoculate against future issues
•	Security and Healthcare Conferences	
•	1-on-1 with healthcare providers	

Educating FDA and Healthcare Providers

Phase 1 Research: Device Vulnerabilities

Phase 1 Research: Device Vulnerabilities

THE REAL PROPERTY.

Weak default/hardcoded administrative credentials

- Treatment modification
- Cannot attribute action to individual

Known software vulnerabilities in existing and new devices

- Reliability and stability issues
- Increased deployment cost to preserve patient safety

Unencrypted data transmission and service authorization flaws

- Healthcare record privacy and integrity
- Treatment modification

Phase 2 Research: Internet Exposure

Shodan Search Initial Findings

Doing a search for anesthesia in Shodan and realized it was not an anesthesia workstation.

Initial Healthcare Organization Discovery

Very large US healthcare system consisting of over 12,000 employees and over 3,000 physicians. Including large cardiovascular and neuroscience institutions.

Exposed intelligence on over 68,000 systems and provided direct attack vector to the systems.

Exposed numerous connected third-party organizations and healthcare systems.

Did We Only Find One?

Generic Search Examples:

shodan port:445 org:health*/clinic/hospital

health* - http://www.shodanhq.com/search?q=poi clinic - http://www.shodanhq.com/search?q=port

hospital: http://www.shodanhq.com/search?g=por_

medical: http://www.shodanhq.com/search?q=port%

health 148 hits
clinic 18 hits
hospital 119 hits
medical 255 hits

Change the search term and many more come up. Potentially thousands if you include exposed thirdparty healthcare systems.

Potential Attacks - Physical

We know what type of systems and medical devices are inside the organization. _____

We know the healthcare organization and location.

We know the floor and office number.

We know if it has a lockout exemption.

Potential Attacks - Phishing

We know what type of systems and medical devices are inside the organization.

We know the healthcare organization and employee names.

We know the hostname of all these devices.

We can create a custom payload to only target medical devices and systems with known vulnerabilities.

Potential Attacks - Pivot

We know the direct public Internet facing system is vulnerable to MS08-067 and is Windows XP.

We know it is touching the backend networks because it is leaking all the systems it is connected to.

We can create a custom payload to pivot to only targeted medical devices and systems with known vulnerabilities.

Phase 3 Research: Admin Access

NOTE: ALL INFORMATION DISCLOSED WAS PUBLICLY AVAILABLE ON GE HEALTHCARE'S WEBSITE.

CVE-2013-7404 CVSS = 10

GE Discovery NM750b – Nuclear Imaging

Manufacturer	Model	Version	Type of Device	Type of Account	Login info
GE	Discovery	NM 750b	Nuclear Imaging	Telnet- Root	UserID = "insite" Password = "2getin"
GE	Discovery	NM 750b	Nuclear Imaging	FTP- Admin	UserID = "insite" Password = "2getin"

CVE-2011-5374 CVSS = 10

CVE-2011-5374 GE Discovery NM670/NM630 - Nuclear Imaging/CT

Manufacturer	Model	Version	Type of Device	Type of Account	Login info
GE	Discovery	NM670	Nuclear Imaging/CT	SU Account	UserID = "su" Password = "install"
GE	Discovery	NM670	Nuclear Imaging/CT	Service Account	UserID = "service" Password = "#bigguy1"
GE	Discovery	NM670	Nuclear Imaging/CT	Root Account	UserID = "root" Password = "install"
GE	Discovery	NM630	Nuclear Imaging	SU Account	UserID = "su" Password = "install"
GE	Discovery	NM630	Nuclear Imaging/CT	Service Account	UserID = "service" Password = "#bigguy1"
GE	Discovery	NM630	Nuclear Imaging/CT	Root Account	UserID = "root" Password = "install"

GE Login Credentials Word Cloud

So If They Are Indeed Default Are There Still Issues

 Support personal often rely on implementation documentation so these logins are heavily utilized in the healthcare industry.

- 3. When the *User Properties* screen appears, verify/change the following parameters and click **OK**.
 - User Must Change Password at Next Login: Unchecked
 - User Cannot Change Password: Checked
 - Password Never Expires: Checked
 - Account Disabled: Uncheck

3.3.2 Changing Passwords

You can change any of the account passwords with the following procedure.

Important

Do not change the InSite password. Remote access will be disabled for InSite support if the password is changed.

Table 3-8: Acquisition Passwords

Account User Name	Default Password	
root	root.genie	
service	service.	
insite	insite.genieacq (Do not change this password!)	
admin	admin.genie	
reboot	reboot	
shutdown	shutdown	

Name	Password
MuseAdmin	Muse!Admin

NOTE: Tech Support will logon to the system with pcAnywhere using this user name and password.

		Confirm			\mathbf{X}
Password Mana this website. Do you want Pa	ager can remember assword Manager to <u>Y</u> es	this logon and enter it aut o remember this logon? Never for this site	tomatically the r <u>N</u> o	next time you return to	

Ask the remote station operator for your assigned username and password.

This resets the user's confirm password to password.

NOTE: To perform the following steps, you must generate X-ray radiation. Follow proper safety precautions with the X-ray system.

- Turn on the digital system and login as service: (user: serviceapp password: orion)
- 2. When the service application starts, select the *Calib* function on the *Main Menu*.
- 3. Select System Manual Tab.
- 4. Select Overlay Tab.
- 5. You should now see a white circle in the image display (you may want to minimize the calibration window). Activate fluoro radiation; center the II output phosphor within the outline circle by moving the camera/lens assembly position on the image intensifier (II).

Honeypot Research: Are Attacks A Reality?

Real World Attacks

Using known default login information for remote access?

What we were looking ____for... Leveraging existing exploits for remote command execution?

Custom malware?

Malicious intent to interfere with the device (or worse, someone using the device)?

Campaigns against specific vendor devices?

Real World Attacks – The Data

Data	
Honeypots	10
Successful logins (SSH/Web):	55,416
Successful exploits (Majority is MS08-067)	24
Dropped malware samples	299
Top 3 Source Countries	Netherlands, China, Korea
HoneyCreds login	8

HoneyCred logins are unique to the honeypot ssh/web service, someone did some research.

Real World Attacks – Conclusion

Problem Awareness

Problem Awareness

1

4

2

3

Medical devices are *increasingly accessible* due to the nature of healthcare

HIPAA focuses on patient privacy, not **patient safety**.

FDA does not validate cyber safety controls.

Malicious intent is *not* a prerequisite for adverse patient outcomes.

Stakeholder Ecosystem

Treatment Plans

Treatment Plans

It falls to all of us. Patient safety is not a spectator sport.

- Stakeholders must understand prerequisites
- Multi-stakeholder teams and conversations
- Engage with willing allies where domains of expertise overlap
- Incorporate **safety** into **existing processes**

A Better Way

Summary of Recommended Treatment

- Patient safety as the overriding objective
- Avoid failed practices and iteratively evolve better ones
- Engage internal and external stakeholders
- Safety into existing practices and governance

Projected Outcomes

• "Reliable medical devices to market without undue delay or cost."

- Collaboration among willing allies on common terms
- Medical devices resilient against accidents and adversaries

Medical Device Security Lifecycle: Addressing Risks

Planning & Requirements Phase

- Risk assessment, vulnerability assessment and threat modeling
- Obtain Manufacturer Disclosure Statement for Medical Device Security (MDS2)

Procurement & Contracting Phase

- Risk reduction prior to procurement
- Liability reduction for contracting

Implementation Phase

- Architecture and system design validation
- Post implementation security validation

Maintenance Phase

- Vulnerability assessment and penetration testing
- Liaison with manufacturers, federal agencies and working groups
- Decommission Phase

Where To Start – Two Approaches

Medical Device Security Risk Assessment

- Gap assessment to evaluate governance of medical device lifecycle
- Most common starting point for organizations that accept the risk exposure of medical devices

Vulnerability Assessment & Penetration Testing

- Device specific assessment to identify current risk in medical devices
- Initial approach for organization wanting to identify current risk
- Most often utilized to assess maturity after initial risk assessment

Highlights From The Last 18 Months

FDA Premarket & Draft Postmarket Guidance and Workshops

A REAL PROPERTY AND IN COMPANY

IATC Hippocratic Oath for Connected Medical Devices

Coordinated Vulnerability Disclosure Policies

FDA Safety Communications BEFORE evidence of harm

THE REPORT OF THE PARTY OF THE