

## **Building a Diverse Future in the Biological Sciences**

October 17, 2012



## **Al Bennett, Ph.D.** Hana and Francisco J. Ayala Dean UCI School of Biological Sciences



## Women and URMs in the Academic Pipeline in the Biological Sciences



#### **UCI Biological Sciences Undergraduate Students**

2011 Enrollment40% women; 16% URMs

2011 Graduation56% women; 19% URMs



#### UCI Biological Sciences Graduate Students

2010 Enrollment
263 Ph.D. Candidates
55% women; 19% URMs

2011 Graduation
35 Ph.D. Graduates
60% women; 14% URMs



#### **Faculty Demography**

- In Biological Sciences within the UC system 26% women; 6% URMs
- At UC Irvine, School of Biological Sciences 22% women; 8% URMs



#### **Faculty Demography**





## Maintaining and Improving the Pipeline

**Building a Diverse Future for Biological Sciences** 

Helping High School STEM Students Become Successful Undergraduate STEM Students

**Improving K-12 Science Education** 





## Building a Diverse Future for the Biological Sciences: From K-12 to PhD degree

#### Luis Mota-Bravo, Ph.D.

Director of Outreach, Research Training and Minority Science Programs (MSP) School of Biological Sciences University of California, Irvine



#### **Building a Diverse Future for the Biological Sciences**

- Educational opportunities
  - Females in the K-12 -> college pipeline
  - From the K-12 local educational environment to the University of California
  - Underrepresentation in PhD in Biological Sciences
- MSP: Successful Interventions
  - Undergraduates
  - Graduates

#### **2011 US Median Household Income**



Minority

Underrepresented

#### 10th graders/UC Admits (%)



#### **Orange County High Schools**



#### K-12 School and Home

- Academic preparation
- Educational resources
- Expectations
- Role models in STEM
- Understanding of the importance of higher education
- Knowledge about opportunities available for careers in science



#### National BS/BA to PhD in Bio Sci, Chemistry and Physics (%)





#### Minority Science Programs (MSP) OBJECTIVES

• Increase the number and academic excellence of underrepresented minorities pursuing biomedical research careers and leadership positions

#### Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring (PAESMEM)



#### **MSP Strategies**

- Mentoring, high expectations and a culture of accomplishment
- Comprehensive effort, from K-12, community colleges, undergraduate and graduate students, to advance the careers of students
- Use a "pipeline" approach to identify supportive faculty and promising college students and fostering an interest in basic research through structured research experiences
- Partnerships with K-12 school districts, community colleges and other universities



#### MSP Strategies, contin.

- Professional staff with PhD degrees, teaching and research experience to develop programs activities
- Program institutionalization: seminars and research as a curricular activity
- Synergy with federal grants that require the participation of URM and K-12 students and teachers

#### **MSP Research Training Initiatives**

**Minority Health and Health Disparities International Research Training (MHIRT)** 



#### **MSP** Activities: Undergraduates

- Training in
  - use of current scientific literature (journal club)
  - experimental research design
  - procedures for analyzing and interpreting data, and
  - preparation of scientific communications
- Paid research training at UCI laboratories
- Academic advising and career guidance
- Study groups and preparation in organic chemistry
- Research seminars presented by faculty
- Summer symposium
- National conferences (SACNAS, ABRCMS, AAAS)
- Graduate school application guidance
- Recommendations for opportunities (scholarships and training programs)

#### **MSP** Activities: Graduate Students

- Graduate research conference for prospective applicants
  - Faculty panel and one-on-one conversation with faculty
  - Graduate student panel
  - Guidance in the application process
- Summer program for incoming graduate students
  - Lab rotation
  - Journal Club
  - Oral presentations and reports of lab rotations
- Academic year
  - Study groups for core classes
  - Academic advising
  - Recommendations for opportunities (fellowships and grants)
  - Postdoctotal panel

#### Number of MSP undergraduates pursuing PhD degrees in biomedical sciences



#### PhD degrees awarded by UCI Schools of Biological Sciences and Medicine to URM



#### **MSP Mentoring Philosophy**

- Definition
  - Series of actions, conducted by individuals and institutions, to encourage and prepare students to advance toward productive careers and leadership positions as research scientists
- Encourage
  - Provide confidence
  - Provide support: economic and motivational
  - Promote personal growth
  - Advice and persuasion
- Preparation include, formal and informal components, curricular and extracurricular activities to learn:
  - Analytical thinking
  - Scientific inquiry
  - Critical reading
  - Quantitative reasoning
  - Data collection using instrumentation
  - Statistical analysis of results and
  - Scientific oral and writing proficiency



# What can it be done to increase underrepresented groups in STEM?

- Award competitive State funded proposals to increase underrepresented groups in STEM that generate synergy with federal initiatives
- Develop a set of measurable goals
- Develop a set of short term and long term indicators of success
- Develop a UC database to track the careers of students





## Diane O'Dowd, Ph.D. HHMI Professor Chair, Developmental and Cell Biology UCI School of Biological Sciences



# **Goal:** Help successful high school STEM students become successful UCI STEM students

Challenge: Introductory classes at UCI are

- Large (>400 students/section)
- Diverse (ethnicity, socio-economic, academic preparation, learning style)



School of Biological Sciences University of California • Irvine

## Strategies to improve student learning in a large introductory Bio class, Bio 93

- Class period organized into 3-4 segments
  - Mini-lectures to introduce new material
  - Active learning exercises to engage students and promote dialogue in class
    - Clicker questions
    - Small group discussion
    - Garage Demos



#### In class dialogue





#### • Result

- Increased time for problem solving in mentored setting
- Increase in student and faculty satisfaction

#### • Challenge

 Creating more time active learning in class without losing content



### Move first exposure to material out of class

#### 1. Just-in-time-teaching (JiTT)

- Pre-class assignments to prompt thinking about upcoming lecture
- Student submissions reviewed by instructor prior to lecture
- Lecture adjusted to address areas students need most help with
- Barriers to using this approach
  - Implementation requires major overhaul of class
  - Substantial investment in time-sensitive manner



#### 2. Pre-class reading assignments

- Pre-class online quiz
- 90% take quiz if worth points
- No change in exam performance
- Why don't reading assignments help students master knowledge level material before lecture?
- A. Don't have time to do reading
- B. Text book is too difficult to read
- C. Don't know what to focus on



#### **Develop learn before lecture (LBL) strategy**

- Pre-class exposure to new material
  - Worksheet to guide learning of text book info
  - Pre-class online quiz
  - Assignment submitted; no faculty feedback or lecture revision
- Lecture
  - Active learning exercises/dialogue
  - In class problem solving
- Implementation: Incremental
  - LBLs added to 3 lectures in 2009
  - LBLs in 4 lectures in 2010, 2011



#### Increase in performance on exam questions on topics presented in LBL vs. lecture format





#### LBLs were helpful in learning material





#### Some students still struggle to learn material

#### **Can we identify performance predictors?**



#### Math and AP Bio Strong Predictors of Success in Bio 93

URMS disproportionally affected by low Math SAT





#### Failure rate highest for female URMs





#### Describe one intervention at your institution that has increased success of URM students in introductory STEM courses?



#### Next Steps in Bio 93

- Can a small, flipped, high scaffold/feedback class increase performance of URM and/or non-URM students?
  - Fall 2012, concurrent Bio 93 classes, small flipped vs large
  - Compare performance on identical exams
  - Follow progression through later classes
- Can a pre-Bio 93 MOOC increase performance of URM and/or non-URM students?
  - Summer 2013 MOOC available
  - Fall 2013, compare performance of students electing to take MOOC vs. those that don't



#### Bio 93 Team



O'Dowd

Andrea Roca Sept. 2006- Nov. 2009

Rabul Warrior

Team Andrea Running for Bio 93 students UC Irvine Fall 2009 OC Marathon/Half Marathon May 2nd, 2010

Nancy

ilar-Roca

Morave

Funding from HHMI Professor Program



#### **Recommended Reading**

- Freeman, Haak, and Wenderoth (2011) Increased course structure improves performance in introductory biology. <u>*CBE-Life Sciences*</u> <u>*Education*</u>. 10: 175-86
- Moravec, M., Williams, A., Aguilar-Roca, N.M. and O'Dowd, D.K. (2010) Learn before lecture: a strategy that can increase learning outcomes in large introductory biology courses. <u>*CBE-Life Sciences*</u> <u>*Education*</u>. 9: 473-481
- Aguilar-Roca, N.M. Williams, A.E. and O'Dowd, D.K. (2012) The impact of laptop-free zones on student performance and attitudes in large lectures. *Computers & Education* 59: 1300-1308.



## **Recruiting Tomorrow's Scientists**



#### "Many Nations Passing U.S. in Education, Expert Says" New York Times, March 2010

"California Schools Failing Science"

**Orange County Register, November 2011** 

## **"Science, tech preparation lagging in U.S. schools"**

**Orange County Register, August 2012** 







**Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future** 

**National Academies Press, 2007** 





## Lack of science courses and prepared science teachers



#### In California...

• More than 40% of eighth-grade algebra teachers lack a math credential or are teaching outside their field of training.

• Only 30% of high school physics teachers majored or minored in physics.



# How is UCI meeting this challenge?



# How is UCI meeting this challenge?

**Cal Teach** 



## Cal Teach

## An interdisciplinary program in science education involving the Schools of Biological Sciences Education and Physical Sciences



#### **Cal Teach**

#### Bachelor of Science degree in

- Biological Sciences
- Chemistry
- Earth Systems Science
- Mathematics
- Physics and Astronomy

and

California State Teaching Credential in 4 years



Sample Cal Teach program in Biological Sciences

| FRESHMAN                                    | Units |                                      | Units |                                 | Units |
|---------------------------------------------|-------|--------------------------------------|-------|---------------------------------|-------|
| Fall                                        |       | Winter                               |       | Spring                          |       |
| Bio Sci 93                                  | 4     | Bio Sci 94                           | 4     | Chem 1C, LC                     | 6     |
| Chem 1A                                     | 4     | Chem 1B                              | 4     | Writing?/GE?                    | 4     |
| Writing 39A/B                               | 4     | Writing 39B/C                        | 4     | Math 2A                         | 4     |
| Bio Sci 14: Intro to<br>Sci/Math Teaching   |       |                                      |       |                                 |       |
| (Offered every quarter)                     | 3     |                                      |       |                                 |       |
|                                             | 15    |                                      | 12    |                                 | 14    |
| SOPHOMORE                                   |       |                                      |       |                                 |       |
| Fall                                        |       | Winter                               |       | Spring                          |       |
| Bio 97                                      | 4     | Bio 98                               | 4     | Bio 99                          | 4     |
| Chem 51A, 1LD                               | 6     | Chem 51B, LB                         | 6     | Perspectives Sci and Math       | 4     |
| Bio Sci 101: Middle<br>Schl Sci/Math Tching |       |                                      |       |                                 |       |
| (Offered fall & winter)                     | 3     | <b>Research Methods</b>              | 4     | Math 2B                         | 4     |
|                                             |       |                                      |       |                                 |       |
|                                             | 13    |                                      | 14    |                                 | 12    |
| JUNIOR                                      |       |                                      |       |                                 |       |
| Fall                                        |       | Winter                               |       | Spring                          |       |
| Bio Required Major<br>Course                | 4     | Bio Required Major<br>Course         | 4     | Bio Required Major Course       | 4     |
| Physics 3A                                  | 4     | Physics 3B/LB                        | 5.5   | Physics 3C/ LC                  | 5.5   |
| Know & Learn<br>Math/Sci                    | 5     | Classroom Interactions 1             | 4     | <b>Classroom Interactions 2</b> | 4     |
| Statistics 8                                | 4     | GE                                   | 4     | GE                              | 4     |
|                                             | 17    |                                      | 17.5  |                                 | 17.5  |
| SENIOR                                      |       |                                      |       |                                 |       |
| Fall                                        |       | Winter                               |       | Spring                          |       |
| UD Bio Elective                             | 4     | UD Bio Elective                      | 4     | UD Bio Lab                      | 4     |
| UD Bio Lab                                  | 4     | Read & Lit in Secondary<br>Classroom | 4     | GE                              | 4     |
| Complex Ped. Design                         | 6     | Student Teaching &                   | 6     | Student Teaching &              | 6     |
|                                             |       | Seminar 1                            |       | Seminar 2                       |       |
|                                             |       | GE                                   | 4     |                                 |       |
| Total Units                                 | 14    | 1                                    | 18    | 1                               | 14    |
| l                                           | 1     | I                                    | I     | I                               | l     |



## **Advantages of Cal Teach Program**

- California K-12 science teachers trained by world's leading scientists.
- Recruit the top echelon of CA students into the teaching profession.
- Real classroom experience starting Freshman year.
- A clear pathway to employment.
- Students can explore teaching without limiting options.
- Cal Teach students are part of a special interactive cohort.
- Cal Teach students work with Master Teachers.
- Cal Teach builds a life-long mentoring and networking program.



#### **A New Major Option**

#### **Biology/Education**



#### **A New Major Option**

#### **Biology/Education**

Fall Quarter 2012

> 700 Applicants~ 200 Admitted~70 Enrolled